Chapter 1:

- p. 10: Caption should be "reference velocity (mph)".

Chapter 2:

- p. 29, fig 2.10: α and β need to be swapped.
- p. 35: it does get smaller.

Chapter 3:

- p. 57: footnote $15, \partial u / \partial y=-\partial v / \partial x$.
- p. 66, eq (3.33):

$$
\frac{G^{(m-1)}\left(s_{0}\right)}{(m-1)!}=\frac{1}{(m-1)!} \lim _{s \rightarrow s_{0}} \frac{d^{m-1}}{d s^{m-1}}\left(\left(s-s_{0}\right)^{m} F(s) e^{s t}\right)=\left(k_{0,1} t^{m-1}+k_{0,2} t^{m-2}+\cdots+k_{0, m}\right) e^{s_{0} t}
$$

- p. 66, eq (3.34):

$$
k_{0, j}=\frac{1}{(m-j)!(j-1)!} \lim _{s \rightarrow s_{0}} \frac{d^{j-1}}{d s^{j-1}}\left(s-s_{0}\right)^{m} F(s), \quad j=1, \ldots, m
$$

- p. 67: $k_{2,1} t+k_{2,2}$ and swap labels for $k_{2,2}$ and $k_{2,1}$
- p. 69, above eq (3.40): $|y(t)| \leq \int_{0-}^{t}|g(\tau)||u(t-\tau)| d \tau \leq M_{u} \int_{0^{-}}^{t}|g(\tau)| d \tau$
- p. 70 , below $u_{T}(t)$: is such that $\left|u_{T}(t)\right| \leq 1$ and

$$
y_{T}(T)=\int_{0^{-}}^{T} g(T-\tau) u_{T}(\tau) d \tau=\int_{0^{-}}^{T}|g(\tau)| d \tau
$$

which becomes arbitrarily close to $\|g\|_{1}$ when T is made large.

- p. 71: $y_{\mathrm{tr}}(t)=y_{-}(t)=\mathcal{L}^{-1}\left\{Y_{-}(s)\right\}$
- P3.32: $|G(j \omega)|^{2}$
- P3.89: $\tilde{v}=1 V$
- P3.103: $w=0$

Chapter 4:

- p. 114: $z=S G K F \bar{y}+S F v+S G F w$
- P4.37: to P4.29 and P4.35.
- P4.42: $w(t)\left(T_{i}-T(t)\right) \approx w(t) T_{i}-\bar{w} T(t)$.

Chapter 5:

- p. 126, first paragraph of 5.1: "is the result of"
- p. 137: add footnote on semidefinite: bounded and non-negative.
- p. 148: $m_{t}->m_{c} g\left(m_{t}+m_{t}\right) r->g J m_{r} r$
- P5.6: $J_{p}=m_{p} \ell^{2} / 12, g=10 \mathrm{~m} / \mathrm{s}^{\wedge} 2$.
- P5.25: $\theta=0$. Repeat for $\theta=\pi / 6$.
- P5.38: ...its maximum power with a flow

$$
w(t)=\frac{\bar{w}}{2}(1+\cos (\omega t))
$$

where $\bar{w}=20 \mathrm{gal} / \mathrm{h}\left(\approx 21 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}\right)$ at ambient temperature and $\omega=2 \pi / 24 \mathrm{~h}^{-1}$. Assume that the system is at equilibrium when $T_{o}=T_{i}=77^{\circ} \mathrm{F}\left(\approx 25^{\circ} \mathrm{C}\right), T=\bar{T}=140^{\circ} \mathrm{F}\left(\approx 60^{\circ} \mathrm{C}\right)$ and $w=\bar{w}$. Calculate the resulting closed-loop time-constant in hours and compare your answer with the open-loop time-constant. Is the closed-loop capable of asymptotically tracking a constant reference temperature $\bar{T}(t)=\bar{T}, t \geq 0$? Use MATLAB to simulate the closed-loop response using the nonlinear model from P5.36. Plot the temperature...

- P5.48: $x_{1}(0)=9, x_{2}(0)=1$.

Chapter 6:

- p. 168: $100 e^{-1}->100\left(1-e^{-1}\right)$
- p. 175: below eq. 6.18 "introducing" instead of "introducting".
- P6.9:

$$
u=K e, \quad e=r-\theta .
$$

Show that $(\bar{\theta}, \bar{r})=(0,0)$ and $(\bar{\theta}, \bar{r})=(\pi, \pi)$ are still equilibrium points. Linearize the closedloop system linearized about $(\bar{\theta}, \bar{r})=(0,0)$ and $(\bar{\theta}, \bar{r})=(\pi, 0)$ and calculate the associated transfer-function. Assuming all constants are positive, find the range of values of K that stabilize both equilibrium points.

- P6.36: $w(t)\left(T_{i}-T(t)\right) \approx w(t) T_{i}-\bar{w} T(t)$.

