On a previous post we have discussed how by invoking stability one can solve problems without having to worry about particular inputs. The contrast between a solution that holds for a particular input versus a solution that holds for a class of inputs is highlighted in the present post by revisiting the problem of asymptotic tracking for a simple example.

Continue reading “Asymptotic tracking a constant reference without a pole at zero?”# Tag: asymptotic tracking

## Let your inputs go!

As one learns more about feedback and control systems, at some point, comes an important realization that a variety of distinct problems can be answered if we know how to answer the question: “is some closed-loop system asymptotically stable?” Indeed, the study of stability dominates Chapters 6 and 7, arguably the densest chapters in the book. Many students, when asked what they remember from their undergraduate control class, will quickly point at the *root-locus* or at the *Nyquist stability criterion*. Yet, in the beginning, it might seem that stability is a side dish and not the main attraction.

## Controllers gone unstable

Continue reading “Controllers gone unstable”In order to obtain asymptotic tracking, we need $S(0)=0$, which means we’d need one of the poles of $G K$ to be zero. If $G$ has no poles at zero, then $K$ must be the transfer-function to have the pole at zero. But in order to be asymptotically stable, we need the real parts of the poles to be less than zero, correct? So does it matter if our controller is not asymptotically stable? Is there a way to design a controller that is both asymptotically stable AND provides asymptotic tracking?

Anonymous