Is a proportional controller right for you? Ask your control engineer! Part II

Let’s now take another look at the problem we introduced here in this post. The problem was that of finding a suitable discrete-time controller when the system being controlled is fast to reach steady-state so that it can be modeled as the single delay

$$y(t) = G u(t – \tau), \quad \tau > 0.$$

As seen before, a proportional control is not a good solution in this case. So what is the “simplest” controller one could think of in a situation like that? Of course it will be a dynamic controller! We will go about constructing one such dynamic controller in the rest of this post.

Continue reading “Is a proportional controller right for you? Ask your control engineer! Part II”

Is that a constant? Or is it a delta?

This might be a stupid question.. but oh well. So the inverse laplace of a constant is the dirac delta function times the constant.

With a proportional controller, K(s) = Kp, the inverse laplace of the controller would be the delta function. Is the delta function asymptotically stable?


Anonymous

As it turns out, this is not a stupid question at all! It hits right at the heart of what is and how to represent a dynamic system.

Continue reading “Is that a constant? Or is it a delta?”

Is a proportional controller right for you? Ask your control engineer! Part I

In another undergraduate class I teach here at UCSD students develop hands on control projects and many of them have not taken a class in controls. They have to quickly design and implement controllers often using really cheap and noisy sensors and slow processing times. In that context, a proportional controller, which might be the first choice in a search for a suitable controller, is rarely adequate. I will deal with the issue of noisy sensors and how they severely limit the closed-loop bandwidth in another post. In this one I want to address the issue of large delays.

Continue reading “Is a proportional controller right for you? Ask your control engineer! Part I”